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Scaling Biomarkers to Reproductive EndpointScaling Biomarkers to Reproductive Endpoint
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Gonadotropin Gonadotropin -- Driving variableDriving variable
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Model Model -- Series of Ordinary Series of Ordinary 
Differential Equations Differential Equations 

dT
dt synT GtH synE2(T) = -(  )

dE
dt synE2 k E2ER k E ER2 21 1= + --(T ) [ ] [ ][ ]

dER
dt k E ER k k E ER= - + +-1 1 22 2 2[ ][ ] (  )[ ]

dE ER
dt k E ER k k E ER2 2 21 1 2= - +-[ ][ ] ( )[ ]

dVtg
dt k E ER= 2 2[ ]
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PCB SimulationPCB Simulation

• Croaker exposed to PCBs have GtH levels that
are 38% of control fish

• Multiply GtH driving variable by 0.38
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Cadmium SimulationCadmium Simulation

Cadmium increases GtH secretion by 295%

• Multiply GtH driving variable by 2.95

Cadmium doubles the rate of testosterone production

• Multiply testosterone synthesis function by 2.0



Cadmium Simulation Cadmium Simulation 
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Field EvaluationField Evaluation

Determine if biomarkers measured in field Determine if biomarkers measured in field 
indicate exposure to hypoxiaindicate exposure to hypoxia

•• Simulate cumulative Simulate cumulative vitellogeninvitellogenin production with production with 
decreasing decreasing estradiolestradiol

•• Compare to laboratory studiesCompare to laboratory studies

•• Compare to fish undergoing Compare to fish undergoing gonadalgonadal development development 
that were collected from sites with varying degrees that were collected from sites with varying degrees 
of hypoxiaof hypoxia



Field EvaluationField Evaluation
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Fish BehaviorFish Behavior

•• Behavior often used as a toxicological endpoint Behavior often used as a toxicological endpoint 

•• Effects of contaminants on fish behavior well Effects of contaminants on fish behavior well 
documenteddocumented

•• Difficult to quantitatively extrapolate Difficult to quantitatively extrapolate 
contaminant effects on fish behavior to the contaminant effects on fish behavior to the 
population levelpopulation level



Overview of ApproachOverview of Approach
•• VideoVideo--taped croaker larvae taped croaker larvae 

responding to fake predator responding to fake predator 
attacks (survival skills)attacks (survival skills)

•• Control, low dose PCBs, low Control, low dose PCBs, low 
and high dose and high dose MeHgMeHg conditionsconditions

•• Experiment with red drum Experiment with red drum 
where measure survival skills where measure survival skills 
and also success with a real and also success with a real 
fish predatorfish predator

•• Statistical model: relate survival Statistical model: relate survival 
skills of croaker to probability of skills of croaker to probability of 
escaping a real predatorescaping a real predator



MeHgMeHg Laboratory ResultsLaboratory Results

Days after hatching
2 6 10 14 18

To
ta

l l
en

gt
h 

(m
m

)

2.0

3.
0

4.0

Growth

Days after hatching
3 6 11 17

R
at

e 
of

 tr
av

el
 (m

m
/s

)

0.0

1.0

2.0

3.0
Rate of Travel

Days after hatching
3 6 11 17V

is
ua

l r
ea

ct
iv

e 
di

st
an

ce
 (m

m
)

0

200

400

600

Visual Reactive Distance

Control

Low dose MeHg

High dose MeHg

* *
No effect

Alvarez, 2005

Yolk Oil



PCB Laboratory ResultsPCB Laboratory Results
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2. Statistical Models2. Statistical Models

•• Regression Tree Regression Tree 
–– Relate survival skills to probability of escaping a real predatoRelate survival skills to probability of escaping a real predator by r by 

recursively partitioning data into a recursively partitioning data into a hierarchialhierarchial succession of nodessuccession of nodes

•• Logistic Regression Logistic Regression 
–– Relate swimming speed to the probability of escaping a predator Relate swimming speed to the probability of escaping a predator 

using using logitslogits



Regression TreeRegression Tree
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Logistic RegressionLogistic Regression
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Results: Statistical ModelsResults: Statistical Models
Create multipliers for each developmental stage and each treatmeCreate multipliers for each developmental stage and each treatmentnt
(control, low or high) for swimming speed and the probability of(control, low or high) for swimming speed and the probability of escaping aescaping a
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3. Individual Based Model3. Individual Based Model
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IBM: Baseline ResultsIBM: Baseline Results
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IBM: SummaryIBM: Summary
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4.  Matrix Projection Model4.  Matrix Projection Model

Use a matrix projection model to predict Use a matrix projection model to predict 
populationpopulation--level responses to endocrine level responses to endocrine 
disrupting chemicals from laboratory studiesdisrupting chemicals from laboratory studies



  

  
PA1 FA1 FA2 FA3 FA4 FA5 FA6 FA7 
GA1 PA2 0 0 0 0 0 0 
0 GA2 PA3 0 0 0 0 0 
0 0 GA3 PA4 0 0 0 0 
0 0 0 GA4 PA5 0 0 0 
0 0 0 0 GA5 PA6 0 0 
0 0 0 0 0 GA6 PA7 0 
0 0 0 0 0 0 GA7 PA8 
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Stage duration and mortality are used to calculate P and G

Classic formulation:



Overview of ApproachOverview of Approach
•• Two Atlantic croaker populations with two Two Atlantic croaker populations with two 

nursery areasnursery areas
•• MidMid--Atlantic Bight Atlantic Bight –– North Carolina and VirginiaNorth Carolina and Virginia
•• Gulf of Mexico Gulf of Mexico –– Louisiana and TexasLouisiana and Texas

•• Two contaminantsTwo contaminants
•• PCBsPCBs
•• MeHgMeHg

•• Different exposure scenariosDifferent exposure scenarios
•• Contaminants eliminated after first spawning eventContaminants eliminated after first spawning event
•• Contaminant effects last lifetime of fishContaminant effects last lifetime of fish
•• Percentage of individuals from a nursery area affectedPercentage of individuals from a nursery area affected
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Baseline SimulationsBaseline Simulations
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Baseline SimulationsBaseline Simulations
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Contaminant effectsContaminant effects
•• PCBsPCBs

•• Fecundity is reduced by 65% (Lab)Fecundity is reduced by 65% (Lab)
•• Egg survival is reduced by 81% (Lab)Egg survival is reduced by 81% (Lab)
•• Ocean larva survival reduced by 47% (IBM)Ocean larva survival reduced by 47% (IBM)
•• Ocean larva stage duration reduced by 19% (IBM)Ocean larva stage duration reduced by 19% (IBM)

•• MeHgMeHg
•• Fecundity is reduced by 33% (Lab)Fecundity is reduced by 33% (Lab)
•• Egg survival is reduced by 45% (Lab)Egg survival is reduced by 45% (Lab)
•• Ocean larva survival reduced by 86% (IBM)Ocean larva survival reduced by 86% (IBM)
•• Ocean larva stage duration reduced by 4% (IBM)Ocean larva stage duration reduced by 4% (IBM)
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Conclusions
• Methods:

– regression tree and IBM – relatively new
– expansion of classic matrix model – time steps and regions
– uncertainty and stochasticity embraced

• Physiological model:
– relate biomarker to ecological endpoint of yolk (fecundity)
– evaluate biomarkers and multiple stressors in a dynamic system

• Statistical to IBM to Matrix models:
– laboratory and sublethal effects can be scaled to population level 
– “hundredths of seconds to hundreds of years”


